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It is obviously simpler to attempt to understand the nature of turbulence by studying the processes which accompany 
its occurrence in the case of closed flow, where these processes reflect the inherent properties of the flows and are complicated 
by external random processes in a fairly small and predictable way. Such flows usually convert into turbulent flow via a number 
of bifurcations and a stage of dynamic chaos, namely, modes of flow with unpredictable behavior with time. 

Since it is not possible at present to progress very far in describing the evolution of flows, in which the parameters 
change, by direct "integration" of the Navier-Stokes equations it is extremely desirable to make use of more general models. 
It is this that is also proposed in [1]: one should not concentrate on the specific features of actual flows but, using the ideal 
of universality, one should study, in general form, the types of bifurcations inherent in nonlinear dynamic systems of general 
form. This approach, of course, requires more serious justification since, first, the state space for the Navier-Stokes equations 
is infinitely dimensional and, second, it is not clear whether the properties of the dynamic systems obtained by reducing the 
initial equations are typical. The first steps in this direction would be to prove the existence and uniqueness of global solutions 
of the Navier-Stokes equations and then to prove that the attractors of these equations are of finite dimensions and obtain upper 

and lower estimates of their Hausdorff dimensions. There are only conventional theorems on the finite dimensionality of 
attractors of three-dimensional motions of a viscous liquid available at the present time [2, 3], and complete proofs only exist 
for the two-dimensional case [4]. 

A number of fundamental results have been obtained in numerous experimental and numerical investigations of the 

occurrence of turbulence (see, for example, [5, 6]). In particular, it has been found that chaos in closed flows begins after a 
small number of bifurcations and the corresponding chaotic attractors have comparatively small dimensions. It was discovered, 
however, that even space-time dynamic chaos is not "true" turbulence, but only one more step towards it. As the parameters 
increase the chaotic modes undergo further bifurcations, and the properties of the corresponding multidimensional attractors 
cannot be characterized by existing methods. 

Moreover, as in turbulence, these modes of flow are practically indistinguishable using the standard approach. This 
situation gives rise to numerous problems which touch on the ways that chaos can occur and develop, the properties of the set 
of solutions of the Navier-Stokes equations, their bifurcations, and the possibility of classifying these solutions. Whereas the 

Navier-Stokes initial boundary-value problem describes the phenomenon of turbulence and the transition to it, the theory of 
hydrodynamic instability, which enables one, in principle, to remove the difference in the analysis of bifurcations between the 
partial differential equations and systems of ordinary differential equations (on the central manifold), indicates the generality 
of the problems that arise here for all nonlinear dissipative dynamic systems of fairly high dimensions. 

Our experimental investigations of the occurrence of chaos [6, 7] in the flow between two rotating spheres (spherical 
Couette flow) showed that, at the initial stage (when chaos occurs) there is complete agreement with the theory of dynamic 
systems: there are many nonstandard transition paths. In this connection, multiparametric investigations of spherical Couette 

flow have been undertaken from which it follows that many unexpected bifurcations occur due to the single-parametric approach 
to the investigation of the evolution of particularly multiparametric systems: bifurcations of codimensions greater than 1 appear 
as "nontypical" and unpredictable [8]. The multiparametric approach enabled us to find regions of parameter space where there 
is no interaction of the bifurcational surfaces, and the scenarios by which chaos occurs are realized through typical bifurcations 
when only a single parameter varies. 
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Fig. 1 

To some extent these investigations remove one difficulty but reveal more fundamental ones connected with the 

structure of  multidimensional chaotic attractors. The actual way of  overcoming these difficulties remains, nevertheless, a 

sequential investigation of the structure and properties of multidimensional chaotic attractors from the prehistory of  their 

occurrence. Such attempts have already been made both in experimental and theoretical investigations, but, in the f'mal analysis, 

they have all encountered the difficulty that there are no effective methods of representing such objects. The point is that the 

trajectory, after a reasonable time, is only able to follow an insignificant part of the multidimensional set, while all the 

increasing numbers of independent modes of motion are more and more masked by unavoidable measurement errors. 

In the most complete analysis of methods of  representing the properties of  chaotic attractors [9] the idea was considered 

that, to achieve a certain value of the dimensions of the chaotic attractor (say, 7), no reasonable volume of  information suffices 

for a correct estimate of the dimensions. It was also suggested in [9] (and successfully realized using the example of 

Rayleigh-Benard convection) that, to reconstruct the phase pattern of the system, measurements of the evolution with time 

of not one independent variable but the maximum possible number should be used. However, in practice, this approach involves 

extremely high costs. 

In the present paper, using the example of the investigation of one of a series of bifurcations of one of  the modes of 

spherical Couette flow in the plane of two parameters (e and Re), an attempt is made to show that the method proposed in [10] 

for representing chaotic attractors in time series for a single independent variable is possible. The main advantage of this 

correlation method, as applied to the analysis of time series obtained experimentally, is that effective separation of  the high- 

frequency experimental noise and the slow chaotic dynamics on the attractor is possible. 

1. Conditions for  Carry ing  Out the Experiments. We investigated the adjustment of the spherical Couette flow when 

the Reynolds number Te (or, what is the same thing, the Taylor number Ta) changes both for a fixed relative layer thickness 

= 1.006 and a fixed eccentricity. The basic notation which will be used henceforth is as follows: the Reynolds number Re 

= FRt2/v (F is the angular frequency of  rotation of  the internal sphere, R 1 is its radius and ~ is the kinematic viscosity of the 

fluid), the relative thickness of the spherical layer ~ = (R 2 - RI)/R 1 (R 2 is the radius of the outer sphere, R 2 > R1), and the 

eccentricity e = R/R 1 (R is the shift of  the center of the inner sphere with respect to the center of  the outer sphere along the 

axis of  rotation). Below, all the frequencies in the spectra are normalized to the quantity F o = F/2~r, and R t = 75 mm. We 

made visual observations of  the adjustments of  the flow and we also measured the pulsations of  the velocity at three points of 
the layer (in the region of  the pole and the equator and at a latitude of 45 ~ approximately at the middle of the layer along the 

radius) or three components of  the velocity at one point simultaneously. To do this we used laser Doppler velocimeters, the 

signals from which, after removing the constant component, were digitized and recorded in the memory of  a personal computer 

and on a hard disk. The frequency with which each channel was interrogated was fixed and was 25 Hz. 

The parameters of the equipment and the conditions under which the experiment was carried out were chosen to be 

such that all the main characteristics (Re, the frequency, the half-width of the spectral lines, etc.) could be kept constant to 

within 0.03 %. The characteristic time of viscous diffusion, calculated from the thickness of the spherical layer for ~ = 1.006, 
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was about 100 sec, and over the periphery of  the layer it was about 3000 sec in all the experiments. Hence, all the 

measurements under so-called steady conditions were carried out after steady flow had been maintained for 40 minutes. The 

individual samples were as long as six hours. 

2. Method of  Processing the Results of  Measurements.  Several modes of flow were first isolated in the R e -  e plane, 

in which a transition to chaos and further adjustment of the chaotic attractors when only Re changed occurred as a result of 

normal bifurcations, in every case softly and reversibly. Then, after establishment procedures, the pulsations of  the flow 

velocity were measured at several points of the spherical layer before and after the transition. Long samples were obtained. 

The processing of  these consisted of a Fourier and a correlation analysis and all possible combinations of  these procedures, 

which consisted of  standard methods of  spectral-correlation analysis of  signals and which, for regular quasi-periodic modes, 

enabled us to characterize the states of the system uniquely, and to judge the transition to chaos from the sharp broadening of 

the spectral lines and the increase in the loss of  correlation. For chaotic modes the phase patterns of  a system of different 

dimensions were reconstructed using the well-known Takens procedure (the time-delay method) in order to calculate the 

characteristics of  the attractors of  dimensions (pointwise and correlation), Lyapunov indices, etc. 

Since it was obviously not possible in these experiments to encounter the simplest chaotic attractors, and the transition 

to chaos occurred from tori of  fairly large dimensions, the standard procedures mentioned above do not enable one, in practice, 

to determine uniquely either the bifurcations of the chaotic attractors themselves or their dimensions or to judge from their value 

the readjustments that are occurring. It is under these conditions that unavoidable measurement errors have the greatest effect. 

We therefore attempted to use the approach proposed in [10] and its variant [11], modified somewhat. 

The basic principle of  the algorithm is well known: one constructs from measurement data the trajectory matrix X, 

made up of  the vectors x i of  dimensions n, which occur as if by sequential scanning of  a time series of length N O >> m 

through a time window of width n. The problem arises of  determining for what direction c in n-dimensional space the sum of 

the squares of  the projections S of  these vectors will be a maximum. We obtain from the conditions for an extremum of S 

~ ~ x#x,c, - S~ = O, j = 1 ..... n, N = No - n + 1. 

N 

If we put V = E xijxik, we obtain an eigenvalue problem for the matrix V, proportional to the covariance matrix of  the vectors 
i=l 

x: Vc = Sc. The eigenvalues of  this matrix are equal to the sum of the squares of the projections of  the vectors x on the 

direction c, while the c themselves form an orthonormalized basis. It is assumed that the deterministic part of the time series 

determines the greatest eigenvalues, whereas the random noise, which makes contributions to all the eigenvalues, considerably 

distorts only the corresponding weakest motions, not exceeding the noise level. The projections on the first vectors, the 

eigenvalues of  which lie above the noise level, provide estimates of  the dimensions of the attractor. One of the versions of  these 

estimates is described in [10]. 

Unfortunately, there are no clear criteria for separating the deterministic part of the eigenvalues from the region of 

transition from deterministic to noisy values. We developed a procedure to do this. We constructed the projections of  the phase 

pattern on the first q < n eigenvectors of the covariance matrix (in this investigation q = 9 and n = 20-30), which gives a 

set of  vectors z i. 
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We then took the set of  tangential vectors Yi = zi - z0, lying in a small neighborhood E of  a certain vector z o from 

a chosen region of the attractor. A local covariance basis is constructed for all yj such that E - cr < [y] < E + o. If  all yj 

lay strictly in tangential space, they were projected only onto the first m vectors, where m is the dimensions of  the attractor, 

while the other projections were equal to 0 or close to the noise values. Because of the curvature of  the manifold, the yj are 

projected onto a large number of  directions. For a certain number of directions the attractor may be fractal. However, the 

dependence of  the length of the projections on E for these different directions is different. For the "true" projections S - E 2, 

due to the curvature S - E 4, and for the noise directions S does not depend on E, whereas in the fractal directions there is 
no regular dependence of S on E [11]. 

3. Results of  Measurements.  In Fig. 1 we show a diagram of the flow modes in the R e - e  plane for one of the 

sequences of modes with principal frequencies F1 and F3, namely the sequences F1, F3 and F4 [8]. The bifurcational curves 

corresponding to the soft and reversible adjustments of the flow modes for a quasistatic change in the parameters are 
represented by the lines. We have used the notation F3, F4, etc., to denote the curves where motions appear with specified 

frequencies (for technical reasons not all the curves are so labelled), while the notation F3-F12, etc, denotes regions in which 

other sequences exist. The double lines represent irreversible adjustments of  the flow modes. Certain regions of  the chaotic 

motions are denoted by the word chaos. Modes of  the type F3-F5 and F3-F12, although they also occur in the sheet F1, F3 

and F4, in fact belong to other sheets of  the general bifurcational diagram~ They possess considerable hysteresis (with respect 

to the curves shown in Fig. 1) and may be extended backwards from the double lines to considerably smaller values of Re 
softly and reversibly. 

In this investigation we studied one of the sequences of the mode F3-F5, to reach which we carried out the following 

operations. For fixed e = 0.01 and a quasistatic increase in Re we obtained initially for Re = 460 a mode with frequency.F1, 

and then, for Re = 734, the frequency F3 appeared, the value of Re increased up to 870 and the eccentricity increased further 

to e = 0.073, as a result of  which the mode F3-F5 occurred. One can reach this mode if, for fixed e = 0.073, after exciting 

F1, by changing Re quasistatistically, one obtains a chaotic mode for Re = 790 as a result of bifurcation of codimension 2, 

and then one sharply increases Re to values greater than 850. For fixed e, all the adjustments of this mode with frequencies 

F1, F3 and F5 occur softly and reversibly when only Re is varied, by increasing which other frequencies appear, chaos arises 

as well as a number of adjustments of  the chaotic modes, and when Re is reduced these states disappear in reverse order and 
are reproducible. 
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We show spectrograms of some of these in Figs. 2-8. Along the abscissa axis we have plotted the frequency, 

normalized to the frequency of rotation of the sphere F o, and along the ordinate axis we have plotted the logarithm of the 
spectral power density of the flow velocity pulsations logI. The numbers 1-4 indicate the fundamental noncommensurable 

frequencies of the modes representing independent motions. The spectrogram of the mode with three frequencies (Re = 840) 
is shown in Fig. 2 and was obtained from the data of measurements in the region of a pole where motions at frequency F1 were 

very small (peak 3). There are peaks in the spectrum at the fundamental frequencies, the harmonics, their combinations and 

broadband noise. Estimates of the dimensions of the attractor by traditional methods gave a value of 2.3 and clearly do not 
sufficiently take into account the contribution of the motion at frequency F1. 

Bifurcation of this torus 3 occurs when Re = 875 in torus 4. The spectrogram of the new mode when Re = 880 is 

shown in Fig. 3. The addition of one more frequency considerably complicates the spectrum, but due to the regularity the mode 
can be uniquely identified. However, to obtain acceptable values of the dimension by a standard method one must increase the 

length of the sample. In Fig. 9 the eigenvalues of the covariance matrix S(i) for different flow modes are shown by the points, 

connected, for clarity, by sections of straight lines, as graphs of InS as a function of the number i (the value of Re of the mode 

is indicated under each curve obtained). The four highest eigenvalues selected indicate that the dimensions of the attractor do 
not exceed 4, and the remaining S(i) can be regarded as noise. 

When Re = 895 a chaotic attractor occurs in the system. The spectra for the new mode when Re = 900 are shown 
in Figs. 4 and 5. It can be seen that there is considerable broadening of all the spectral lines, and all the underlying peaks sink 

into a continuous background, which is reduced by three orders of magnitude compared with the regular modes. The difficulties 

involved in estimating the pointwise or correlation dimensions are due precisely to this nature of the evolution of the trajectory 

in this chaotic set. To obtain justified estimates of the spectral density distribution of this dynamic it is necessary to average 

many spectrograms (compare Fig. 4 (a single sample) and Fig. 5 (averaged over 13 samples)), and long samples are needed 

to estimate the dimensions. The eigenvalues of S(i) are shown in Fig. 9 (the curve with Re = 900). It can be seen that four 
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principal eigenvalues are attained and hence, one of  the directions of motion on torus 4 has become chaotic but the torus itself 

has remained. 
When Re = 915 bifurcation of  the chaotic attractor occurs, which it is practically impossible to detect by simply 

observing only the evolution of  the spectrum: as Re increases there is a gradual increase in the level of  the continuous 

background and a disappearance of the residues of the spectral lines (compare Figs. 5 and 6). Estimates of the dimensions using 

the correlation integral and in a pointwise manner are uncertain: as Re increases the dimensions change gradually. The 

eigenvalues of the covariance matrix for Re = 921 are shown in Fig. 9. Four principal eigenvalues can be distinguished but 

the form of the "plateau" of  the initial eigenvalues, which belong to the noise, has also changed, so that the fifth eigenvalue 

to some extent represents mainly not the noise but the dynamics of the system. The dynamics of  the system in the so-called 

"local covariance basis" have been analyzed in detail in [11], and the first estimates indicate that in this case torus 4 was 

destroyed as a result of the generation of a new motion. The results for this analysis are shown in Figs. 10 and 11. When Re 

= 840 (Fig. 10) only three eigenvalues in the local covariance basis manifest the required dependence on E 2 for comparatively 

small values of E, whereas when Re = 921 there are four such eigenvalues and a similar relationship is found for the fifth, 

where the oscillating form of the graphs of the latter indicates the chaotic nature of the directions on the attractor corresponding 

to them. 

Even greater radical changes in the system occur when Re is increased further. Then occurrence of a chaotic mode, 

the spectrum of which is shown in Fig. 8, is obviously preceded by two bifurcations of the chaotic attractor discussed above. 

The topology of the attractor changes considerably - in effect, two centers appear, around which the trajectory attempts to 

evolve. The projection of the phase pattern of the system onto the plane of the first two eigenvectors c I and c 2 of the covariance 

basis is shown in Fig. 12. The trajectory of  the system shown here is made up of 0.3% of the whole trajectory investigated, 

the apparent discontinuities and self-intersecting trajectory - a consequence of the two-dimensional projection of the 

multidimensional set. The spectra of the eigenvalue of the covariance matrix for Re = 1000 and 965 are shown in Fig. 9, and 

from them we can draw the preliminary conclusion that once bifurcation occurs before Re = 965, while the other occurs after 

this (the spectrum of the chaotic mode for Re = 965, while the other occurs after this (the spectrum of the chaotic mode for 

Re = 965 is shown in Fig. 7). A preliminary analysis in the local covariance basis shows that the first of  these corresponds 

to the occurrence of  a new regular motion while the second corresponds to a new chaotic motion. The attractor can be 

characterized by seven independent coordinates and is imbedded in a 15-dimensional Euclidean space. There are four regular 

directions and three chaotic directions on the attractor. Traditional methods of estimating the dimensions give, in this case, a 

value of  5.9, but one cannot judge the structure of  the attractor from this. 

In conclusion we note that by constructing a Karunen-Loev basis for the trajectory matrix it becomes possible to 

advance traditional methods of  characterizing chaotic attractors somewhat further. Even in comparatively complex chaotic 

modes, the spectra of which are practically continuous and the correlations decay strongly (see the autocorrelation function for 

Re = 1000 in Fig. 13), it is possible to investigate the structure of the multidimensional attractors corresponding to them, and 

on the basis of this to classify the set of perturbulent chaotic states of hydrodynamic systems. 

The work described in this paper was supported by the Russian Fund for Fundamental Research (Grant No. 93-013- 
17342). 
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